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Abstract. In a partially blind signature scheme, one part of the mes-
sage being signed is hidden from the signer, together with the resulting
signature, while another part of the message is visible to the signer. In
this paper we present a partially blind scheme for a signature scheme
that is closely related to Boneh-Boyen signatures. As an application,
we introduce a single-show attribute-based credential scheme with short
signatures.

1 Introduction

A blind signature scheme is a signature scheme together with an issuing protocol,
which is such that the signer learns neither the message that it signs nor the
resulting signature. First introduced by Chaum [Cha83], blind signatures are
used in, for example, electronic cash schemes (e.g., [CFN90]), electronic voting
(e.g., [JC97]), and unlinkable credentials (e.g., [Cha90; Bra00]).

It can, however, be a problem that the signer has no knowledge or control
whatsoever over the message that he signs; for example, there is no way in which
it could impose an expiry date. In these cases one could use a partially blind
signature scheme [AO00], in which one part of the message remains hidden but
another part is visible to the signer. The known part of the message, called com-
mon information, can then be used for common information that the signer and
signer agree upon in advance.

In this paper we present and give a full security proof of a partially blind
issuing protocol for a signature scheme that is closely related to the Boneh-
Boyen signature scheme [BB08] (which, if no common information is included,
reduces to a blind signature scheme for actual Boneh-Boyen signatures). The
Boneh-Boyen signature scheme produces very short signatures, and their secu-
rity does not rely on the Random Oracle model (ROM). They have found ap-
plications in, for example, attribute-based signatures [MPR11], group signatures
[Gro07], and verifiable random functions [DY05]. We expect that the ability to
hide (part of) the message and the resulting signature from the issuer will allow
many more applications, especially within privacy-sensitive areas such as the
ones mentioned earlier, or in which the issuer is not fully trusted. As an example



of this, in the final section we briefly describe a single-show attribute-based cre-
dential scheme [Bra00], that has short signatures, provable unforgeability that
does not rely on the Random Oracle Model, an efficient showing protocol, and
single-show issuer unlinkability.

We define our scheme and its signing protocol in Section 4, after having fixed
notations and discussed some preliminaries in Section 2, and the Boneh-Boyen
signature scheme itself in Section 3. In Section 5, we prove that our scheme is
indeed partially blind and unforgeable. Next, in Section 6 we discuss how our
scheme relates to the Boneh-Boyen scheme, and how it can be generalized to
allow multiple pieces of common information. Finally, in the same section we
describe as an example of our scheme a single-show attribute-based credential
scheme.

2 Preliminaries

First we fix some notation. We denote algorithms with calligraphic letters such
as A and B. By y ← A(x) we denote that y was obtained by running A on
input x. If A is a deterministic algorithm then y is unique; if A is probabilistic
then y is a random variable. If A and B are interactive algorithms, we write
a ← A(·) ↔ B(·) → b when A and B interact and afterwards output a and b,
respectively. Finally, |x| denotes the length of x in bits. For example, if x is an
integer then |x| = dlog2 xe.

For zero-knowledge proofs we will use the Camenisch-Stadler notation [CS97]:
for example,

PK
{
(k1, k2) : K = P k11 P k22

}
denotes a zero-knowledge proof of knowledge of the numbers k1, k2 that satisfy
the relation K = P k11 P k22 . (We will, however, not switch to Greek letters to
denote the variables of which knowledge is proved.)

2.1 Partially blind signature schemes

A partially blind signature scheme is made up of three algorithms: KeyGen, Sign,
and Verify, for generating keys, signing, and verifying signatures, respectively. For
a fixed security parameter k, these algorithms work as follows:

KeyGen(1k) outputs a random key pair (SK,PK).
Sign This is an interactive protocol between the signer S and a user U that

results in a signature σ on the hidden message m ∈ M and common infor-
mation i ∈ I:

S(SK, i)↔ U(PK,m, i)→ σ.

Verify(m, i, σ, PK) takes a public key PK, messages m ∈ M, i ∈ I, and a
signature σ, and returns valid or invalid.



In the next two games, we define the security notions for partially blind signature
schemes [AO00].

Definition 1 (Blindness). This is a game between an adversarial signer A and
a user U that is controlled by the challenger. The goal of the adversary is to see
whether it is signing a message that it chose itself, or a random message chosen
by the challenger. The game proceeds as follows.

Setup Adversary A runs (SK,PK)← KeyGen(1k) and chooses a message-pair
m ∈M, i ∈ I. It sends PK, m and i to the challenger.

Run The challenger chooses a bit d ∈R {0, 1}, sets m0 = m and m1 ∈RM, and
gives md and i to the user U . The user U engages with the adversary in the
signing protocol on messages md and i.

Result If the user output a signature σ at the end of the signing protocol, then
it is sent to the adversary.

Guess Adversary A outputs his guess d′ ∈ {0, 1}. It wins if d = d′ and if U
produced a valid signature.

We say that a signer (t, ε)-breaks the blindness of a signature scheme if it can
win this game with advantage ε in time t.

We have chosen for a real-or-random game here, because this form of the
game is best suited for our needs when we are proving that our blind Boneh-
Boyen issuing protocol is indeed blind in section 5.1. This game is equivalent
to the real-or-real game, in which the adversary outputs two messages m0 and
m1 (along with i), which are given to two users, after which it has to guess
which user received which message. For probabilistic encryption schemes, whose
security game closely resembles the one above, we have proven this equivalence
in Appendix A.

Notice that the game guarantees unlinkability only if the common informa-
tion i is the same for both the real message m0 and the random message m1,
otherwise the adversary could use i to trivially link the signature with its view
of the Sign protocol.

Definition 2 (Unforgeability under chosen-message attacks). We define
unforgeability under chosen-message attacks of a partially blind signature scheme
in terms of the following game. It is a game between an adversarial user A and
a signer S, controlled by the challenger. The game proceeds as follows.

Setup The challenger generates a private-public key pair (SK,PK)← KeyGen(1k).
It sends PK the adversary A.

Queries The adversary and challenger engage in the Sign protocol over at most
q message-pairs (mj , ij) ∈M×I that are chosen adaptively by the adversary.
The runs of the Sign protocol may be arbitrarily interleaved as the adversary
sees fit. Each time, the challenger sends the resulting signature σi to the
adversary.

Output The adversary A outputs a triple (m, i, σ) and wins the game if σ is a
valid signature over m and i, and (m, i, σ) 6= (mj , ij , σj) for all 1 < j < q.



We say that our signature scheme is (t, q, ε)-existentially unforgeable under cho-
sen message attacks if there exists no probabilistic polynomial-time algorithm
that can win the above game with probability ε, running in time at most t and
making at most q signature queries. In this game the adversary can let each
message on which it queries the challenger depend on the public key, and on the
previous messages. Notice that it suffices for the adversary to output any new
triple (m, i, σ); for example, it could be that σ is a new signature over an already
seen message mj or even message-pair (mj , ij), or perhaps the message pair is
new but σ = σj for some j. In these cases, the adversary still wins.

2.2 Known-message attacks for signature schemes

We will reduce the unforgeability (in terms of the game above) of our partially
blind signature scheme to the unforgeability of weak Boneh-Boyen signatures.
This signature schemes satisfies a weaker form of unforgeability, in the sense that
the adversary has to send the messages that it wants signed before it receives
the public key. The relevant game is as follows [GMR88].

Definition 3 (Unforgeability under known-message attacks). We define
unforgeability under known-message attacks of a (non-blind) signature scheme
in terms of the following game. It is a game between an adversarial user A and
a signer S, controlled by the challenger. The game proceeds as follows.

Announcement The adversary A announces at most q messages m1, . . . ,mq ∈
M that it wants signed.

Response The challenger generates a private-public key pair (SK,PK) ←
KeyGen(1k). It generates q signatures σi ← Sign(mi, SK) over the messages
mi that A chose earlier. It sends PK and the signatures σi to A.

Output The adversary A outputs a pair (m,σ) and wins the game if σ is a
valid signature over m, and (m,σ) 6= (mi, σi) for all 1 < i < q.

We say that our signature scheme is (t, q, ε)-existentially unforgeable under
known message attacks if there exists no probabilistic polynomial-time algo-
rithm that can win the above game with probability ε, running in time at most
t and sending at most q messages in the Announcement phase.

2.3 Bilinear group pairs

A bilinear group pair (G1, G2) consists of two (additively written) cyclic groups,
both of prime order p, such that there exists a a bilinear map or pairing ; that is,
a map e : G1 ×G2 → GT (with GT a multiplicative group of order p) satisfying
the following properties:

1. Bilinearity : for all G,G′ ∈ G1 and H,H ′ ∈ G2 we have e(G + G′, H) =
e(G,H)e(G′, H) and e(G,H +H ′) = e(G,H)e(G,H ′).

2. Non-degeneracy : The element e(P,Q) is a generator of GT (i.e., e(P,Q) 6= 1).



3. Computability : There exists an efficient algorithm for computing e(G,H) for
any G ∈ G1, H ∈ G2.

Such pairing exist for some special classes of elliptic curves. We only consider only
Type 3 pairings, that is, bilinear group pairs such that there is no efficiently com-
putable isomorphism either from G1 to G2 or vice versa. Such pairings exist for
particular types of elliptic curves; we mention for example [BN06; MNT01]. For
more information about bilinear group pairs and pairings we refer to [GPS08];
see also, for example, Chapters I and X from [BSS05].

We denote the generators of G1 and G2 with P ∈ G1, Q ∈ G2 respectively.
We consider the coefficient k of a group element K = kP to be elements of
Zp = Z/pZ.

3 The Boneh-Boyen signature scheme

There are two versions of the Boneh-Boyen signature scheme [BB08]: a nonde-
terministic one that is unforgeable under chosen-message attacks, and one that
is unforgeable under known-message attacks and deterministic. We describe the
former one first.

KeyGen(1k) Generate a Type 3 bilinear group pair (G1, G2), such that |p| = k.
Pick two generators P ∈ G1, Q ∈ G2. Choose two private keys a, b ∈ Z∗p, and
set A = aP and B = bP . The public key is the description of the bilinear
group pair, together with (p, e, P,Q,A,B).

Sign(m, a, b) Choose a random value r ∈ Zp \ {−a+mb } and compute S =
1

a+m+rbQ (the inverses are calculated modulo p). The signature is the pair
(S, r).

Verify(m,A,B) Using the bilinear pairing e, verify that e(A+mP + rB, S) =
e(P,Q). Return true if and only if this equation holds.

If the signature was correctly generated, then

e(A+mP + rB, S) = e

(
(a+m+ rb)P,

1

a+m+ rb
Q

)
= e(P,Q)

so that the signature will verify.
We will refer to this scheme as the strong Boneh-Boyen signature scheme. The

weak Boneh-Boyen signature scheme is obtained by setting r = 0 and removing b
and B from the private and public keys, respectively. Thus, a weak Boneh-Boyen
signature on the message m ∈ Zp would be C = 1

a+mQ. This signature scheme
is unforgeable under known-message attacks in the sense of Definition 3. Boneh
and Boyen prove the unforgeability of their strong scheme by reducing it to that
of their weak scheme. The unforgeability of the weak scheme, in turn, relies on
the q-Strong Diffie-Hellman assumption, which says the following:

Given as input a (q+3)-tuple of elements (P, xP, x2P, . . . , xqP,Q, xQ) ∈
Gq+1

1 ×G2
2, it is intractable to output a pair

(
d, 1

x+dP
)
∈ Zp ×G1 for a

freely chosen value d ∈ Zp \ {−x}.



For a more elaborate description of the signature scheme and its properties, we
refer to the paper by Boneh and Boyen [BB08] in which it was introduced.

4 The partially blind Boneh-Boyen scheme

In order to include the common information i ∈ I, we first extend the Boneh-
Boyen signature scheme as follows (resulting in a special case of the signature
scheme called GSBB, for Generalized Strong Boneh-Boyen, from [Bha+09]). We
take the strong Boneh-Boyen signature scheme and include c ∈ Z∗p and C = cP
in the private and public keys, respectively, i.e.,

SK = (a, b, c), PK = (p, e, P,Q,A,B,C).

The message-space M and space of common information I both are Zp. For
m, i ∈ Zp, a signature will be (S, r) ∈ G2 × Zp, where

S =
1

a+m+ rb+ ic
Q.

The signature is valid only if

e(A+mP + rB + nC, S) = e(P,Q).

The private keys a, b, c of the signer, as well as the messagesm, i and randomness
r of a signature are all elements of Zp. In the following, we will have to embed
these elements in the message space of the Paillier encryption scheme [Pai99],
which is Zn (for some n that we will take to be much larger than p). We do this
simply by taking the lowest representative, which we will denote by the same
letter in the definition below. Thus, the elements a, b, c,m, i, r and also β should
be considered as ordinary integers. Near the end of the protocol (in step 3), there
will be a reduction modulo p that restores them as elements of Zp.

Definition 4. To obtain a signature on a message m and common information
i (on which the user and signer agreed in advance), the user and the signer (who
knows the private keys a, b, c), interact in the following way (see also Figure 1).

1. The user generates a new Paillier encryption system (n, g, λ) such that n is
at least 2lp3, where 22−l is an acceptable failure rate. Then, it generates a
blinding factor β ∈R {1, . . . , p} and a randomizer r1 ∈R {1, . . . , p} for use in
the resulting signature, and sets B = JβK and R = Jβr1K. It sends n, g,B,R
to the signer, and proves that B and R are constructed correctly using

PK{(β, r1, ρ1, ρ2) : B = gβρn1 mod n2 ∧ R = gβr1ρn2 mod n2}.

(For how to perform such a proof, see [CDN01]).
2. If the proof is correct the signer generates a blinding term γ ∈R Zn and

randomness r2 ∈R Zp, and calculates

D = Ba+r2b+icRbJγK mod n2 = Jβ(a+ (r1 + r2)b+ ic) + γ mod nK.



It sends D to the user and proves that it constructed D correctly using

PK{(a, b, c, r2, γ, ρ3) : D = Ba+r2b+icRbgγρn3 mod n2}.

3. The user calculates

s̃ = Decrypt(D) + βm mod n = β(a+m+ (r1 + r2)b+ ic) + γ mod n,

and sends ŝ = s̃ mod p to the signer (here, the reduction modulo p is done
by taking the lowest representative of s̃).

4. The signer removes γ by calculating s = ŝ − (γ mod p) = β(a +m + (r1 +
r2)b+ ic) mod p, and sends S = 1

cQ together with r2 to the user.
5. Finally, the user unblinds the signature to obtain S = βS. Setting r = r1+r2,

it accepts if (S, r) is a valid signature on m and i.

The protocol is summarized in Figure 1.

Common information: Boneh-Boyen public key
(e, p, P,Q,A,B,C), common information i ∈ I

User Signer
knows message m ∈ Zp knows secret keys a, b ∈ Zp

Phase 1
Generate Paillier n, λ, g

Choose β, r1 ∈R Z∗
p

send n, g, JβK, Jβr1K −→ into n, g, B, R
PK{(β, r1, ρ1, ρ2) : B = gβρn1 mod n2 ∧ R = gβr1ρn2 mod n2}

Phase 2
choose γ ∈R Zn, r2 ∈R Zp

into D ←− send Ba+r2b+icRbJγK
PK{(a, b, c, r2, γ, ρ3) : D = Ba+r2b+icRbgγρn3 mod n2}

Phase 3
set E ← Decrypt(D)
send E + βm mod p −→ into ŝ

Phase 4
set s = ŝ− (γ mod p)

into S, r2 ←− send 1
s
Q, r2

Phase 5

set S = βS, r = r1 + r2
Verify(m, i, S, PK)

return (S, r)

Fig. 1. Our interactive partially blind signing protocol from Definition 4.

Proposition 5. The blind Boneh-Boyen signature scheme as described in Def-
inition 4 is correct with overwhelming probability.



Proof. If both the user and the signer follow the protocol, then at the start of
step 3 the user can calculate s̃ = β(a+m+(r1+r2)b+ ic)+γ mod n. We denote
the lowest representative of s̃ by s′, and that of γ by γ′, and we set r = r1 + r2.
Now, in step 3 the user sends ŝ = s′ mod p to the signer. This will result in a
valid Boneh-Boyen signature only if s′ = β(a+m+ rb+ ic) + γ′, which in turn
will only hold if

β(a+m+ rb+ ic) + γ′ < n.

The maximum value of the left hand side of this inequality is p(p + p + (p +
p)p+p2)+n = 2p2+3p3+n. Thus the chance that the inequality does not hold
satisfies

P
(
β(a+m+ rb+ ic) + γ′ > n

)
<

2p2 + 3p3

2p2 + 3p3 + n

<
4p3

2p2 + 3p3 + 2lp3
<

4p3

2lp3
< 22−l.

Thus with chance at least 1− 22−l, we have ŝ = s′ mod p = β(a+m+ rb+ ic)+
γ′ mod p, which will result in a valid signature.

5 Blindness and unforgeability

5.1 Blindness

We will reduce the partial blindness of our issuing protocol to the real-or-random
indistinguishability of the Paillier encryption scheme. We define this kind of
indistinguishability below, and prove in Appendix A that it is equivalent with
left-or-right indistinguishability under chosen plaintext attacks.

Definition 6 (Real-or-random indistinguishability (ROR-CPA)). Let
(KeyGen,Encrypt,Decrypt) be a public key encryption scheme. The ROR-CPA
game goes as follows.

Setup The challenger runs (SK,PK)← KeyGen(1k) for some security param-
eter k, and gives PK to the adversary.

Query The challenger chooses a message m ∈M and sends it to the challenger.
The challenger chooses a bit b ∈R {0, 1}, sets m0 = m and chooses a random
message m1. It sends Encrypt(PK,md) to the adversary.

Result The adversary returns his guess d′. It wins if d′ = d.

We say that an adversary (t, ε)-breaks the real-or-random indistinguishability
under chosen plaintext attacks if it has advantage at least ε and runs in time t.

In order to prove partial blindness of our issuing protocol, first we argue that
the advantage of no adversarial signer can depend on the ciphertext JβK that it
receives in the first step of the issuing protocol (see Definition 4).



Definition 7. We say that a user sends the correct B in the first step of the
issuing protocol when the plaintext β of B is the same β that occurs in the value
ŝ = β(a+m+ rb+ ic) + γ mod p that the user sends in step 3.

Proposition 8. No adversarial signing algorithm can win the blindness game
(as in Definition 1) for our blind Boneh-Boyen issue algorithm with an advantage
that depends on whether the user sends him the correct B or not, provided that
Paillier is ROR-CPA secure.

Proof. Suppose that we have an adversary ABBB whose advantage at the Blind
Boneh-Boyen game is ε+ when the user sends the correct B, and ε− when the
user does not. We assume3 ε+ > ε−. We build an algorithm AROR−CPA that
has an advantage ε/2 at winning the ROR-CPA game. AROR−CPA will act as
the adversary in the ROR-CPA game, and as the user in the blindness game, as
follows.

1. The challenger ofAROR−CPA outputs a Paillier public key.AROR−CPA chooses
β ∈ Zp and sends it to his challenger, who responds by choosing d ∈R {0, 1},
setting β0 = β and β1 ∈R Zp, and sending JβdK to AROR−CPA.

2. AROR−CPA engages in the signing protocol with ABBB, simulating the role of
the user. In step 1 of the issuing protocol it sends B = JβdK that it received
from his challenger. In the rest of step 1 it behaves normally (using the
Paillier public key that it received from his challenger).

3. At the end of step 2, it extracts a, b, c, r2, γ from the zero-knowledge proof
performed by ABBB, so that it can calculate ŝ = β(a+m+(r1+ r2)b+ ic)+
γ mod p which it sends to ABBB in step 3. Thus, the value ŝ is what it would
normally be, while B is only correct if the challenger chose d = 0.

4. We have AROR−CPA send guess d′ = 0 if ABBB won and d′ = 1 if it lost.

With probability 1
2 , the challenger chose d = 0 in step 1. In that case, ABBB has

chance 1
2 + ε+ of winning. In the other case, when the challenger chose d = 1,

ABBB has chance 1
2 − ε− of losing (note the sign). The chance of AROR−CPA

winning is thus

1

2

(
1

2
+ ε+

)
+

1

2

(
1

2
− ε−

)
=

1

2
+

1

2
(ε+ − ε−)

meaning that the advantage of AROR−CPA at winning the ROR-CPA game is
(ε+ − ε−)/2. If Paillier is (ε/2)-ROR-CPA secure, it follows that ε+ − ε− < ε.

Theorem 9. No adversary can break the blindness of the blind Boneh-Boyen
signature scheme with advantage ε, provided that Paillier is (ε/2)-ROR-CPA
secure.

Proof. The view of the signer of an issuing is

D = {i, JβK, JβrK, β(a+m+ (r1 + r2)b+ ic) + γ mod p, γ, r2}.
3 The opposite assumption does not make much sense, but with minor modifications
the proof can then still be made to work.



Let us call the second, third and fourth elements of this trace B, R and ŝ
respectively, so that D = {i, B,R, ŝ, γ, r2}. By the previous proposition, the
advantage of the adversary cannot depend on the correctness of B, nor of R by
the same argument. In addition, the common information i has the same value,
independent from the choice for d that the challenger makes.

Therefore the only information that the signer has to work with that could
possibly increase his advantage is ŝ, γ and r2. Now it can subtract γ from ŝ it
in order to learn s := ŝ− γ mod p = β(a+m+ (r1 + r2)b+ ic) mod p = β(a+
m+ rb+ ic) mod p. Now take another valid message-signature pair (m′, S′, r′).
Then,

β′ =
β(a+m+ rb+ ic)

(a+m′ + r′b+ ic)
mod p

is precisely such that s = β′(a+m′+r′b+ic) mod p. Therefore, ŝ is information-
theoretically hiding. The same holds for r2; for any r′ and r2 there is an r1 ∈ Zp
such that r′ = r1 + r2.

Thus, any view can correspond to any message-signature pair.

5.2 Unforgeability

Theorem 10. If the weak Boneh-Boyen scheme is (q, ε)-unforgeable under known-
message attacks, then our Blind Boneh-Boyen scheme is (q, ε′)-unforgeable under
chosen-message attacks, where ε′ − ε is negligible.

Proof. Suppose we have an adversary A that breaks the unforgeability of our
scheme under chosen-message attacks. We will use this adversary to make a
forger B that breaks the unforgeability of the weak Boneh-Boyen scheme under
chosen-message attacks, much in the same way that Boneh and Boyen reduced
the unforgeability of their strong scheme to that of the weak scheme.
B will do this by acting as the challenger of A, and as the adversary in the

unforgeability game for weak Boneh-Boyen signatures. We have B proceed as
follows.

Announcement B chooses q messages w1, . . . , wq ∈ Zp and sends them to his
challenger as the messages that it wants signed. In response, the challenger
chooses a private-public key pair a ∈R Zp, A = aP for weak Boneh-Boyen
signatures, and sends A to B, together with q signatures Ci over the messages
w1, . . . , wq.

Setup B generates additional private keys b, c ∈R Zp and sends A,B = bP,C =
cP to A.

Queries Proceeding adaptively, adversaryA engages with B in the Blind Boneh-
Boyen signing algorithm for q message-pairs (m1, i1), . . . , (mq, iq). When
signing (mj , ij), we have B act in the following way.
– At the end of step 1, B extracts β, r1 that A chose for message mj from

the zero-knowledge proof.



– In step 2, B chooses some a′ ∈R Zp and acts as if this is are the private
key of his challenger. In addition, it acts as if r2 = 0. As these values are
never sent directly to the user, A could impossibly notice this.

– In step 4, B learns β(a′+mj+r1b+ ijc). As it knows all variables except
for mj , it can solve this to learn mj . It now chooses r2 ∈ Zp such that
mj + (r1 + r2)b + ijc = wj mod p. For this message it received a valid
signature Sj in the Announcement phase. Then, it sends (β−1Sj , r2) back
to A in step 4.

Output A sends his forgery (m, i, r, S) to B, who sends (m+ rb+ ic, S) to his
challenger.

The output of B will be correct if and only if that of A is correct. However,
B wins only if its output (m + rb + ic, S) is new, i.e., there is no j such that
m+ rb+ ic = wj . We now show that this is so with overwhelming probability.

Indeed, suppose that with non-negligible probability, B produces (m, i, r, S)
such that there is a j such that m + rb + ic = wj . But wj = mj + rjb + ijc,
yet the triple (m, i, r) is unequal to (mj , ij , rj) because of the assumption that
A won. Therefore,

0 = (m−mj)P + (r − rj)B + (i− ij)C

is a nontrivial representation of 0 with respect to P,B,C. One can prove that
being able to construct such nontrivial representations of 0 is equivalent with
being able to compute discrete logarithms (see, e.g., [Bra00]).

Thus, this can only happen with negligible probability. Therefore, if A has
advantage ε, then the advantage of B will be negligibly close to ε.

6 Related schemes and applications

6.1 Blind Boneh-Boyen signatures

If we include no common information by setting i = 0 and removing c and C
from the signer’s private and public key, then Figure 1 reduces to a blind issuing
protocol for Boneh-Boyen signatures, and the theorems above then prove that
this protocol is blind and that the scheme is unforgeable.

6.2 Generalizing to tuples of common information

We can also go the other way, and generalize our scheme to including more than
one piece i of common information. Let the signer’s secret key contain not c ∈ Z∗p
but a tuple of numbers c1, . . . , ct ∈ Z∗p (and the public key contains not C but
C1 = c1P, . . . , Ct = ctP ). Then the signer can sign a hidden message m and
tuple i1, . . . , it by setting

D = BδRbJγK with δ = a+ r2b+

t∑
k=1

ikck



in step 2 of the Sign protocol. The resulting signature (S, r) over (m, i1, . . . , it)
is then valid only if

e

(
A+mP + rB +

t∑
k=1

ikCk, S

)
= e(P,Q).

This results in a partially blind signature scheme for GSBB signatures [Bha+09],
which is such that if one takes t = 1 then it reduces to the scheme from the
previous sections. It is not difficult to adapt the unforgeability and blindness
proofs to this scheme.

6.3 An application: single-show attribute-based credentials

In an attribute-based credential scheme, users obtain a signature from the issuer
over a set of attributes (generally elements of Zm for some integerm), which they
can then selectively show to other parties. Well-known examples of such schemes
include Idemix [CL01] and U-Prove [Bra00]. Idemix credentials are unlinkable:
that is, multiple showings of the same credential cannot be linked to each other.
By contrast, the showing protocol of U-Prove is not unlinkable (for this reason U-
Prove credentials are called single-show credentials in the context of anonymous
credentials). As a result of the lesser complexity of U-Prove’s showing protocol,
however, it is much more efficient than that of Idemix.

However, there is no known unforgeability proof for U-Prove credentials,
and it has even been suggested that no such proof exists under any standard
intractability assumption [BL13]. In addition, the showing protocol is honest-
verifier zero-knowledge, meaning that it guarantees safety against dishonest
users but not necessarily against dishonest verifiers (i.e., they might be able
to learn the private key or hidden attributes, breaking the user’s anonymity and
possibly even allowing it to impersonate the user). Finally, U-Prove relies on
the Random Oracle model. As an application of our partially blind signature
scheme, we now introduce a single-show attribute-based credential scheme that
suffers from none of these issues.

Issuing a credential The tuple of common information i1, . . . , ik will serve as
the attributes of the credential, while the hidden message m will be the user’s
private key. The user and issuer decide in advance on the attributes i1, . . . , ik that
the credential will have. Then the user chooses a value for m, and performs the
Sign protocol with the issuer on (m, i1, . . . , ik). The user the receives a signature
on the attributes (i1, . . . , ik) and private key m, which the issuer does not know.
The signature together with the attributes and secret key form the credential.

Showing a credential The user can show such a credential as follows. Let
D ⊂ {1, . . . , t} be the index set of the attributes that the user wants to disclose,
and let C = {1, . . . , t} \ D be the remaining attributes.



– The user sends S, r and the attributes (ik)k∈D that it wishes to disclose to
the verifier, together with D = mA+

∑
k∈C ikCk.

– The user performs a zero-knowledge proof of knowledge of the private key
and hidden attributes:

PK
{
(m, (ik)k∈C) : D = mA+

∑
k∈C

ikCk

}
.

– The verifier checks that the signature (S, r) is valid as follows:

e

(
A+mP + rB +D +

∑
k∈D

ikCk, S

)
?
= e(P,Q).

Theorem 10 then guarantees unforgeability of these credentials. In addition, as a
consequence of Theorem 9, issuer-unlinkability is provided in the following sense:
if in two executions of the showing protocol outlined above, the same attributes
with the same values were disclosed, and the traces of the two executions are
sent to the issuer, then the issuer cannot tell if those two executions came from
one and the same or from two distinct credentials. Furthermore, assuming that
a black-box zero-knowledge proof of knowledge is used such as the one from
[CDM00] (instead of the Schnorr Σ-protocol, which is only honest-verifier zero-
knowledge), it is impossible for the verifier to learn the secret key or hidden
attributes. Finally, contrary to U-Prove the scheme does not rely on the Random
Oracle Model.

This results in a credential scheme of which the length of the signatures and
the efficiency of the showing protocol is comparable with U-Prove. Although the
issuing protocol is not as efficient as that of U-Prove, stronger security guarantees
are provided.

7 Conclusion

By providing a partially blind issuing protocol for Boneh-Boyen-like signatures
and proving its security, we have enabled applications of these signatures in situ-
ations where it is important that the issuer does not learn (part of) the message
being signed as well as the resulting signature. As an example of the simplicity
and flexibility of our scheme, we have introduced a single-show attribute-based
credential scheme that is an improvement over its well-known predecessor U-
Prove in almost every way, and we hope to see many more such applications in
the future.
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Definition 11 (Left-or-right indistinguishability (IND-CPA)). Let (KeyGen,
Encrypt, Decrypt) be a public key encryption scheme with message spaceM. The
IND-CPA game goes as follows.

Setup The challenger runs (SK,PK) ← KeyGen(1k) and gives PK to the ad-
versary.

Query The challenger chooses two messagesm0,m1 ∈M and sends them to the
challenger. The challenger chooses a bit d ∈R {0, 1} and sends Encrypt(PK,md)
to the adversary.

Result The adversary returns his guess d′. It wins if d′ = d.

Proposition 12. If, for some encryption scheme, no adversary can win the
IND-CPA game with advantage ε, then no adversary can win the ROR-CPA
game with advantage ε.

Proof. Suppose that there is an algorithm AROR−CPA that can win the ROR-
CPA game with advantage ε. Then we build an adversary AIND−CPA that can
win the IND-CPA game as follows:

1. AROR−CPA chooses m0 ∈ M and sends it to AIND−CPA, who additionally
randomly chooses m1 ∈RM.

2. AIND−CPA sends m0, m1 to his challenger and receives JmdK.
3. Then it sends JmdK to AROR−CPA.
4. Lastly, it forward AROR−CPA’s guess to challenger.

If the challenger chose d = 0, then AROR−CPA will with chance 1
2 + ε see that

the ciphertext it received corresponds with the plaintext that it chose, so that
it will return d′ = 0. Otherwise his guess will be d′ = 1. Therefore, AIND−CPA

will have advantage ε in winning the IND-CPA game.

Proposition 13. If, for some encryption scheme, no adversary can win the
ROR-CPA game with advantage ε, then no adversary can win the ROR-CPA
game with advantage ε/2.

Proof. Suppose that there is an algorithm AROR−CPA that can win the ROR-
CPA game with advantage ε. Then we build an adversary AIND−CPA that can
win the IND-CPA game as follows:

1. AROR−CPA receives m0,m1 ∈M from AIND−CPA. It flips a bit d and sends
md to its challenger.

2. AROR−CPA receives either JmdK or encrypted randomness from its challenger,
and forwards this to AIND−CPA.

3. If AROR−CPA outputs a guess d′ and d = d′ then AIND−CPA guesses 0,
otherwise it guesses 1. If AROR−CPA does not output a guess then AIND−CPA

guesses randomly.

If the challenger sent JmdK instead of encrypted randomness, then AIND−CPA will
with probability 1

2 +ε guess d correctly. If, on the other hand, the challenger sent
encrypted randomness then AIND−CPA can have no advantage. Thus, AIND−CPA

guesses correctly with probability 1
2 + ε

2 .
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