
A provably secure keyshare protocol

Sietse Ringers David Venhoek

September 10, 2023

Abstract

For wallets holding credentials from anonymous credential schemes such as
Idemix or BBS+, we introduce and prove security of a keyshare protocol
that partially escrows the secret key that is shared across the wallet’s
credentials to a trusted third party, to allow revocation of the entire wallet
in case of loss or theft as well as for increased security, enabling attaining
eIDAS Level of Assurance High.

1 Introduction
In implementations of an anonymous credential scheme such as Idemix
[IBM12] or BBS+ [ASM06; CDL16], one wants the user to be easily able
to revoke all of their credentials in case that they lose control over the
device or system storing them. In addition, securely and irretrievably
storing the private key material of such credentials inside hardware is
not currently supported by devices available to users, making it difficult
to reach eIDAS Level of Assurance High which requires sole control of
the owner over their credentials. Both of these issues can be solved by
escrowing part of the attribute value(s) of the credential of a user with
a trusted third party (TTP), to which the user authenticates using other
(e.g. ECDSA) hardware-bound private key material. Since completing an
Idemix session requires proofs of knowledge on all of the attribute values
contained in the credential, such credentials are then only usable if the
trusted third party is willing to cooperate with the user of the credential.
This allows revocation of all of a users credentials by simply instructing
the trusted third party to no longer cooperate on proofs of knowledge of
its attribute value(s).

In IRMA1 [22a; 22b], an implementation of the Idemix anonymous
credential scheme, this is implemented through splitting the value of the
0-th attribute (the user secret key) into two parts: mu, which is kept
by the user of the credential, and mt, which is held by the trusted third
party. The value of the 0-th attribute as a whole is then taken to be
m = mu +mt.

1To make things specific, in the remainder of this paper we work in the context on Idemix.
Since the security proof below depends only on the hardness of the discrete logarithm problem,
however, nothing prevents one from implementing the protocol in this paper on BBS+ or other
(sufficiently similar) anonymous credential schemes. In such cases care should be taken to
make the appropriate corrections in the protocol; for example, in the case of BBS+ as well as
any (elliptic curve-based) system in which the group order is public knowledge, all responses
s = w + cm of zero knowledge proofs must be taken modulo the group order, while this is in
fact impossible in Idemix (in which the group order is the issuer’s private key).

1



User Verifier
N,m,R N,P = Rm mod N

Choose random η
η←−−−−−−−−−−−

Choose random w
W = Rw mod N
c = H(η, P,W )
s = cm+ w

c,s−−−−−−−−−−−→
W = RsP−c mod N
Verify c = H(η, P,W )

Figure 1: Non-interactive proof of knowledge of a discrete logarithm.

During issuance or disclosure of attributes, a proof of knowledge on
the combined attribute m can then be constructed by having the user of
the credential construct a Schnorr zero-knowledge proof [Sch90] of mu,
and the trusted third party construct a Schnorr proof of mt. These proofs
can then be merged by multiplying the commitments, and adding the
responses, yielding a Schnorr proof for the combined secret m. This pro-
tocol is illustrated in Figure 2. Note that it is in essence two runs of the
Schnorr protocol, one between the trusted third party and the user, and
one between the user and the verifier. The only difference is that the user
uses the output of the trusted third party to construct the proof that the
verifier is asking for, instead of fully providing it himself.

Since the user at no point knows m as a whole, nor mt specifically,
and since all credentials of the user share the same value m as the 0-th
attribute, the above is sufficient to be able to block all credentials of a
user, as long as we can guarantee that the trusted third party was actually
used during issuance of the credential.

This paper focuses on how to achieve this. Specifically, we will define
and prove security of a protocol that allow the issuer or verifier to know
that without collaboration between user and trusted third party, the user
cannot control or know the value m during or after credential issuance.

As we will be working within the context of Idemix, by convention all
products and exponentiations will henceforth be taken modulo N = pq.

2



TTP User Verifier
N,R;mt N,R;mu, Pt N,R

choose random nonce η
η←−−−−−−−−−−−

choose random wu

Wu = Rwu mod N
hW = H(P,Wu)

hW←−−−−−−−−−−−
choose random wt

Wt = Rwt mod N
Wt−−−−−−−−−−−→

W = WuWt

c = H (η, P,W )
su = wu + cmu

η,su,P,Wu←−−−−−−−−−−−
verify hW = H(P,Wu)
c = H(η, P,WuWt)

st = wt + cmt

s = su + st
σ = sign (sk, (c, s))

σ,s−−−−−−−−−−−→
σ,c,s,P−−−−−−−−−−−→

verify (pk, σ, (c, s))
W = RsP−c mod N
verify c = H (η, P,W )

Figure 2: The keyshare protocol.

3



2 The protocol
We start with the simplest case of proving knowledge of a single exponent.
Let m = mu + mt, in which mt is known by the trusted third party
(TTP) but not by the user, and mu is known by the user but not by the
TTP. Let R be some publicly known value (e.g. part of a public key),
and let Pt = Rmt be known to the TTP and Pu = Rmu be known to
the user. Then the protocol in Figure 2 allows the user and the TTP
to jointly prove knowledge to some verifier2 of the number m satisfying
P = PuPt mod N = Rm mod N , without disclosing m, and without any
party knowing the value of m. This protocol is designed as follows.

• The user must compute both of its contributions to the zero-know-
ledge proof of m before it gets access to those of the TTP:

– In the first step this is realized by the TTP requiring the user
to send hW = H(P,Wu) before it will respond with its commit-
ment Wt. The user does not send its commitment Wu directly
in this step to prevent the TTP from being able to let its choice
of Wt depend on Wu. When the user later sends su, it also sends
P and Wu so that then the TTP can verify hW = H(P,Wu).
This forces the user to use the same Wu in the entire protocol,
just like it would be if it had sent Wu directly.

– The user must send its response su to the TTP before it gets to
see the response st of the TTP. The TTP additionally signs the
final response s = su + st, so the user cannot lie to the verifier
which su it used.

• The TTP enforces that the challenge is constructed correctly accord-
ing to the Fiat-Shamir heuristic.

• The verifier ultimately receives a conventional Schnorr zero-know-
ledge proof in the Fiat-Shamir heuristic [FS87] of the secret m =
mu + mt, along with a signature σ from the TTP over s and c.
What the verifier receives is thus very close to conventional Idemix.

We adopt the following notational convention for the variables P,W,m, s
occuring in a zero-knowledge proof.

• The subscript u on a variable, such as Pu, denotes that this value
belongs to the user;

• Similarly, the subscript t on a variable, such as Pt, denotes that this
value belongs to the TTP;

• When a variable that can occur with the u or t subscripts occurs
without a subscript, e.g. P , this means that it concerns the sum or
product of the subscripted variables. For example, P = PuPt and
s = su + st.

2.1 Security games
We adopt the following notations.

2In an anonymous credential scheme this protocol is most useful during issuance, since if
the collaboration of the TTP is enforced during issuance of a credential then the collaboration
of the TTP is automatically guaranteed for every future disclosure involving that credential.
In terms of terminology, however, in the remainder of this section we stick with “verifier”
instead of “issuer”, because in the context of this section the only role of that party is to verify
the proof of knowledge of P = Rm mod N . We return to issuance in Section 3.1.

4



• We adopt the random oracle model (ROM), modelling a crypto-
graphic hash function as a random oracle H. That is, H assigns
a random integer to every input. If H is called with an input al-
ready specified previously, it consistently returns the same integer
as returned previously. In security games with a challenger and an
adversary, this oracle is controlled by the challenger.

• C(i, hW ) encodes the TTP first interaction, where it receives a value
hW and some arbitrary label i and returns a commitment Wt. This
function terminates if called multiple times with the same value of
i.

• R(i, η, su, P,Wu) encodes the second TTP interaction: when given
η, su, P,Wu and a label i, it returns a pair (σ, s) such that (1) σ is a
signature over (c, s) where c = H(η, P,WuWt) and Wt is the value
in the corresponding call to C(i, hW ), and (2) for st = s − su, it
holds that Rst = WtP

c
t . This function terminates if called multiple

times for the same i, or called for a value of i for which there is no
matching invocation of C(i, hW ), or if hW ̸= H(P,Wu).

The label i keeps track of which call to R belongs to which call to C. A
call to C and R with the same label i can be said to constitute a TTP
session. In this paper, between the two invocations of C(i, ·) and R(i, ·)
for a particular TTP session i, the user is allowed to call C and R with
other session labels as it sees fit. We use this to prove security in the
presence of adversaries controlling multiple distinct users with which they
perform multiple interleaved keyshare sessions simultaneously.

We now formalize the requirements on the user stated in the previous
section. We do this in the form of a security game, for which we will show
that an adversary needs to violate the hardness of the Discrete Logarithm
problem in order to win.

Game 1. The adversary participates in Protocol 2 with the TTP and
verifier in the role of the user, having access to functions C(i, hW ) and
R(i, η, su, P,Wu) of the TTP, which it may invoke any number of times
in any order. After finishing this, its access to the TTP is removed. It
then participates in Protocol 1 with the challenger, in the role of user. It
wins if it makes the challenger accept.

The above game is somewhat unwieldly to directly build security proofs
on. Since it ends with an execution of Protocol 1 which is a conventional
Schnorr zero-knowledge proof, we can however extract its secret from it
in the usual fashion if it wins the game. This results in the following
equivalent but simpler game.

Game 2. The adversary participates in Protocol 2 with the TTP and
verifier in the role of the user, having access to functions C(i, hW ) and
R(i, η, su, P,Wu) of the TTP, which it may invoke any number of times
in any order. It wins if it outputs a number a such that P = Ra mod N .

2.2 Security proof
Theorem 1. Assuming the hardness of the discrete logarithm problem
of integers modulo N , no probabilistic polynomial-time algorithm can win
Game 2 with non-negligible probability.

Proof. In the security proof of the ordinary Schnorr proof of knowledge
protocol, the fact that the challenge is under control of the challenger

5



plays a crucial role. This allows it to run the adversary twice with different
challenges c and c′, resulting in an efficiently computable formula for the
secret, contradicting the hardness of the discrete logarithm problem. This
holds even in the Fiat-Shamir heuristic, where the challenge is still under
the control of the adversary through the random oracle H, whose output
it may freely choose.

This proof is structured similarly. The protocol is such that the ad-
verary is forced by the verifier and TTP to use an honestly constructed
challenge c = H(η, P,WuWt), again giving control over the challenge to
the challenger (which controls the verifier and TTP). Together with some
probabilistic bookkeeping, this allows the proof to proceed.

Assume that an adversary exists that can win Game 2 with non-
negligible probability. We use the adversary to construct an algorithm
that when given some number Pt can compute logR(Pt) mod N in poly-
nomial time. Acting as the challenger which controls the TTP and verifier,
we play Game 2 with the adversary, which acts as the user, in the following
(standard) way.

If the adversary receives protocol messages (x1, . . . , xn) denote its out-
put with Ar,p,w(x1, . . . , xn), where r is the randomness source used by A,
and where p and w are the public and private input to the adversary, re-
spectively. The function Ar,p,w is called the next-message function. Since
this function exists since we assumed the adversary to exist, we can make
the challenger invoke Ar,p,w(x1, . . . , xn) at will (controling the r and p
and the xi but not controlling or knowing w). The challenger can use this
next-message function to perform the protocol with the adversary, with
a high degree of control: it can “pause” the adversary by not invoking
the next function, and even “rewind” the adversary to an earlier phase of
the protocol, by removing or changing the last parameter(s) xn, and then
proceed again with other parameters to its advantage.

The adversary may call C and R as well as the random oracle H at any
time with any input values. When it does, the challenger acts as follows.

• C(i, hW ): Choose random integers c and st, and compute the TTPs
commitment as Wt = Rst/P c

t mod N . Out of all invocations so
far to H, see if there is one receiving two arguments where hW was
returned. If such an invocation exists, i.e. hW = H(P,Wu) for some
P and Wu supplied by the user, take P and Wu and modify H such
that future calls to H(η, P,WuWt) return the number c. Return Wt.

• R(i, η, su, P,Wu): Lookup the invocation to C with the same label
i. If no such invocation of C exists, then abort. Perform the steps as
defined in the protocol, but instead of honestly computing st (which
we can’t do because we don’t know mt), use the st chosen during
the computation of C(i, hW ).

The challenger uses these functions to answer TTP queries of the adver-
sary as it runs, and lets it invoke them as it sees fit, until finally it either
produces an output or aborts.

Since we assumed that the adversary can win Game 2 which defines
precisely how C, H, R must act, we must show that these functions behave
indistinguishably from the C, H, R of an honest TTP:

• C always returns randomly distributed numbers, just as it would for
an honest TTP.

• The same holds for H.

6



• As to R, given its input first it computes H(P,Wu) and checks that
that equals hW . If this does not hold, then like an honest TTP, R
aborts. If it does hold, then (P,Wu) must equal the preimage of
hW = H(P,Wu) found by C. Looking at how C programmed H, we
see that when R computes H(η, P,WuWt) it will receive the number
c such that Rst = P c

t Wt as required. Like an honest TTP, therefore,
R returns a tuple (σ, s), where s is a randomly distributed number
satisfying the expected relation, and where σ is a signature over
(c, s).

Next, note that since the signature σ is unforgable, the output of the
adversary always has to correspond with the result from one of the TTP
sessions it has run, i.e. R(i, η, su, P,Wu) for some i. This implies that we
don’t have to worry about the case where the adversary provides values
for its output without invoking R. Using the queries and output of our
adversary, our goal will now be to extract two traces of the adversary,
where at the end the adversary uses the same session i in the results it
provides, but with different challenges. If we manage to get that, then
the regular approach for extracting a secret from Schnorr proofs can be
applied, after which we can use the secret to compute logR(Pt).

First we run the adversary once to completion. If it aborts, we abort.
Suppose it succeeds. Then we have obtained from the adversary the values
P , Wu, su, c as well as a, and we know the following:

1. P = Ra, by the assumption that the adversary succeeds.

2. W = RsP−c, by the verification done by the verifier.

3. In its message to the verifier, the user is forced by the signature σ to
send the challenge c = H(η, P,WuWt) as constructed by the TTP
in the invocation of R. Additionally, for this c the verifier verifies
c = H(η, P,W ), which is only going to hold if the verifier and TTP
use the exact same input parameters to H. Therefore, W = WuWt.

4. The user is forced by the signature σ to use s = su + st as the
response for the proof of knowledge of P .

5. Wt = RstP−c
t , by construction of C and R.

Using each of these points sequentially, we first compute

Rac = P c =
Rs

W
=

Rs

WuWt
=

Rsu+st

WuRstP−c
t

=
RsuP c

t

Wu

Rewriting the left and right hand sides of this, we find the following in-
termediate expression for P c

t :

P c
t = WuR

ac−su (1)

Using c, we now look up the associated TTP session i in our log of TTP
queries performed by the adversary. Let us rewind the adversary to the
point of the call to C in TTP session i. Now, modify H so that the
challenge for that TTP session becomes a new random value c′. This
allows us to then run the adversary until it again makes the R call with
the label i that it used previously when it succeeded. Pause the adversary
at the point of this call (note that we could not have continued here if it
were necessary, as we can now produce no value s′ that would make the
verifier accept if the adversary were honest). Let s′u be the third argument
to that invocation of R. If it does not call R again with the label i, then
we abort.

7



Suppose that the adversary indeed calls R with label i. At this point,
there are two possible scenarios. The following equation either holds, or
it does not:

P c′
t = WuR

ac′−s′u (2)

That is, equation (1) for c′ and s′u. Let us for now assume that it does
hold (otherwise we simply abort). Since c ̸= c′, we may combine both
expressions to obtain one without Wu in it:

P c−c′

t = Ra(c−c′)−(su−s′u)

which finally results in

Pt = Rr with r = a− su − s′u
c− c′

.

As we can calculate r in polynomial time from the information we have
gathered, and as all our steps running the adversary also only take poly-
nomial time, we have now provided a method for calculating discrete log-
arithms in polynomial time. It remains to show that this method succeeds
with non-negligible probability.

The probability that this method succeeds equals the probability that
it does not abort at each of the places above where it aborts under certain
circumstances. Denote the probability that the method described above
to compute r works with Pr[success], and denote the adversary with A.
Additionally, we write Pr1 or Pr2 to refer to a probability occuring in
the first or second run of the adversary. Then we can summarize our
observations so far schematically as follows:

Pr[success] = Pr1[A wins]
× Pr2[A invokes R(i, ·)]
× Pr2[Equation (2) holds | A invokes R(i, ·)]

The first factor is non-negligible by assumption. What remains to show
is that the second and third factors are also non-negligible. To see this,
observe that as we pause the adversary in the second run, from its per-
spective it cannot detect that it is running in its first or second run, or
indeed that it is being used as described above, as opposed to just run-
ning normally. We repeatedly use this observation in each of the following
points:

• The label i is important to us since the adversary used that label in
its response during the first run, but from its perspective, there is
nothing special about label i distinguishing it from any of the others.
This means that

Pr2
[
Equation (2) holds | A invokes R(i, ·)

]
= Pr2

[
Equation (2) holds

]
.

• If instead of pausing the adversary when it calls R(i, ·), we somehow
could provide it with the suitable value for s′, then Equation (2)
would have to hold for the adversary to be succesful. Therefore, the
probability that this holds is at least as big as the probability that
the adversary would win the second time:

Pr2
[
Equation (2) holds

]
≥ Pr2

[
A wins

]
.

8



• Going further, we must have Pr1[A wins] = Pr2[A wins]. Therefore,
we can just write Pr[A wins].

Gathering our remarks so far, we now have

Pr
[
success

]
≥ Pr

[
A wins

]2 × Pr2
[
A invokes R(i, ·)

]
.

As to the second factor in this inequality, our observation above allows us
to treat the adversary’s choice of which TTP session it uses for its output
as a discrete stochastic variable X taking integer values in a range [1,M ],
where M is the maximum possible numer of TTP sessions the adversary
would ever make. Now, from Lemma 1, it follows that the probability of
two independent random trials on X giving the same outcome is at least
1/M . Therefore, we finally obtain

Pr
[
success

]
≥ Pr[A wins

]2 × 1

M
.

Since the adversary is polynomial time in the security parameters, it can
do at most a polynomial number of TTP sessions. Therefore, 1/M is
non-negligible. Since Pr[A wins] is non-negligible by assumption, this
completes the proof.

3 Implementation
The above protocol works for a zero-knowledge proof of a single exponent
m. In practice, a disclosure proof in Idemix and IRMA always involves
zero-knowledge proofs of more than one exponent simultaneously. In the
next subsections, we will generalize the protocol above to the following:

1. Issuance of a single credential;

2. Disclosure of attributes from a single credential;

3. Issuance of multiple credentials simultaneously with disclosure using
multiple credentials;

4. Issuance of multiple credentials simultaneously with disclosure using
multiple credentials, possibly involving more than one TTP simul-
taneously.

In the remainder we now use R0 for what was previously called R, but
the rest of the notation from the previous section we keep as it was.

3.1 Issuance
During issuance, the user proves knowledge of U = SvRmu

0 Pt

∏
i∈B R

m′
i

i ,
where B is the set of indices of randomblind attributes, and m′

i is the
user’s contribution to those attributes.

Above, the challenge c was constructed in the Fiat-Shamir heuristic
as c = H(η, P,W ). In the IRMA implementation of Idemix, the challenge
actually looks as follows:

c = H(context, U, W, η) (3)

where:

• context is a number always equal to 1.

• U = SvRmu
0 Pt

∏
i∈B R

m′
i

i with B and m′
i defined as above.

9



• W = WuWt with Wu = SwvRwu
0

∏
i∈B Rwi

i , where wv and wi are
the randomizers for the zero-knowledge proofs over v and m′

i.

To take this into account, we change the following.

• The win condition for the adversary of Game 2 becomes as follows:
the adversary must output (v, a) such that U = SvRa

0 .

• Throughout the protocol, the user, TTP and issuer use the value U
instead of P , and construct the challenge c as in Equation (3).

Notice that contrary to the protocol as defined in Section 2, the second
point means that here the TTP no longer has the ability to learn Pu, since
Pu is information-theoretically hidden in the ephemeral value U = SvPuPt

through the random number v.

Security proof

The security proof in the previous section relied on the fact that after
execution of C(i, hW ), the challenger (which controls the TTP, issuer as
well as the oracle H) knows all input parameters to H that an honest
user would use when constructing the challenge c. The extension here
is constructed such that it has the same property, due to how the extra
parameters to hW = H(·) as well as those to c = H(·) are chosen. Indeed,
if

C(i,H(U,Wu)) = Wt,

then the correct challenge would be

c = H(context, U, WuWt, η),

all of whose arguments are known to the challenger after execution of C.
Therefore, in the security proofs we do not need to change the definitions
of C, H, R as used by the challenger, apart from taking into account the
changed input parameters.

Next, we obtain an expression for P c
t like Equation (1) as follows.

In the remainder of this subsection, we assume for simplicity that no
randomblind attributes are being issued (B = ∅). This makes no difference
to the security proof. After the first run of the adversary, we have values
satisfying the following.

1. U = SvRa
0 , by the assumption that the adversary succeeds.

2. W = SsvRs
0U

−c, by the verification done by the issuer.

3. In its message to the issuer, the user is forced by the signature σ to
send the challenge c = H(η, U,WuWt) as constructed by the TTP
in the invocation of R. Additionally, for this c the issuer verifies
c = H(η, U,W ), which is only going to hold if the issuer and TTP
use the exact same input parameters to H. Therefore, W = WuWt.

4. The user is forced to use s = su + st as the response for the proof of
knowledge of P .

5. Wt = Rst
0 P−c

t , by construction of the TTP.

Using these sequentially as before, we compute

ScvRca
0 = Uc =

SsvRs
0

W
=

SsvRs
0

WuWt
=

SsvRsu+st
0

WuR
st
0 P−c

t

=
SsvRsu

0 P c
t

Wu

10



which results in

P c
t = WuS

cv−svRca−su
0 .

After the second run of the adversary, we obtain the same expression but
with c′, s′v and s′u. Combining those as we did previously, this results in
the expression

Pt = SrvRr
0, where rv = v − sv − s′v

c− c′
, r = a− su − s′u

c− c′
.

The ability to compute such x and y is equivalent to the ability to compute
discrete logarithms. To see this, suppose that before interacting with the
adversary, the challenger constructs the value S as S = Rs

0 for some
random number s. This does not change the behaviour of the challenger
towards the adversary in any way, so the adversary cannot tell that the
challenger has such knowledge of the exponent s. Therefore, this makes
no difference to the security proof. Then the expression above becomes

Pt = SrvRr
0 = Rsrv+r

0 .

The remainder of the proof stays the same.

3.2 Disclosure
For ease of notation, suppose the user wishes to disclose none of the at-
tributes in her credential, i.e. hide all of them in the zero-knowledge proof.
Then the user proves knowledge of

Z = AeSvRmu
0 Pt

∏
i

Rmi
i ,

Additionally, the Fiat-Shamir challenge is constructed as

c = H(context, A,WuWt, η). (4)

with the user commitment Wu = AweSwvRwu
0

∏
i R

wi
i . Note that the hash

inputs differs a little from what we have seen in previous sections: there,
the second and third input parameters to H were always computed using
the same formula, once with the secret(s) and once with the randomizer(s)
as the exponents. Instead, here the second parameter is A. However, the
TTP does nothing with this parameter except enforce correctness of hW

and putting it into H when computing the challenge, just as it previously
did for U and P . Therefore, this makes no difference for the rest of the
argument.

We make the following changes. In the remainder of this paper, we
will call the party with which the user is performing disclosure or issuance
the requestor. Additionally:

• The win condition for the adversary of Game 2 becomes as fol-
lows: the adversary must output (a, e, v,m1, . . . ,mk) such that Z =
AeSvRa

0

∏
i R

mi
i .

• Throughout the protocol, the user, TTP and requestor use the value
A instead of P , and construct the challenge c as in Equation (4).

Using the same reasoning as above, this will result in an expression of the
form

Pt = AreSrvRr
0

∏
i

Rri
i .

As before, the ability to compute the exponents in such an expression is
equivalent to the ability to compute discrete logarithms.

11



3.3 Disclosure and/or issuance of multiple cre-
dentials
In practice, the keyshare protocol should allow users to perform a single
session in which multiple credentials are issued simultaneously (zero or
more), combined with the disclosure of attributes out of multiple creden-
tials (zero or more). Henceforth, we label each U and A and W with an
index counting the involved credential. Denote the number of credentials
being issued (as opposed to disclosed) with k− 1. For such a session, the
challenge would look as follows:

c = H(context,
U1,W1,uWt, U2,W2,uWt, . . . ,

Ak,Wk,uWt, Ak+1,Wk+1,uWt, . . . ,

η).

(5)

That is, for each credential involved two parameters are put into H: once
the number being proved knowledge of (Ui or Ai) and once the corre-
sponding commitment. The user’s contributions to these commitments
(i.e., Wi,u etc.) differ for each of the credentials involved, but the TTP’s
contribution Wt is the same each time, because the TTP’s contribution
to the proof of knowledge is always over the same number mt.

The number hW must now be computed as follows:

hW = H(U1,W1,u, U2,W2,u, . . . , Ak,Wk,u, Ak+1,Wk+1,u, . . . )

R now receives the following parameters:

R(i, η, su, U1,W1,u, U2,W2,u, . . . , Ak,Wk,u, Ak+1,Wk+1,u, . . . )

Since the TTP must compute a multiplication for each commitment mod-
ulo the modulus of the public key, it needs to know which public keys
are involved. Therefore, whenever a value Ai or Ui or Wi is sent or used
as input to H, we assume that an identifier of the issuer public key is
included. We will for legibility however not include this in our notations.

Using these input parameters, R checks that hW was correctly com-
puted. Next, it computes the challenge as in Equation (5), and then
proceeds with the protocol normally.

Using any one of the involved credentials, the argument of one of the
two preceding subsections may then be used to solve logR0

(Pt).

3.4 Using another TTP or no TTP for some cre-
dentials
Finally, we want the protocol to allow the user to use other TTPs, or no
TTP at all, for some credentials involved in the session. For example,
IRMA’s main production scheme does use a TTP while its demo scheme
does not, and currently IRMA supports issuance and disclosure sessions
in which some credentials are from the production scheme while others are
from the demo scheme.3 The protocol developed here should not make
that impossible.

3Normally, when all credentials involve the same TTP (or when all of them use no TTP
at all), the secret (the zeroth attribute) is forced to have the same value by the requestor, in
order to prevent credential pooling attacks. When not all credentials use the same TTP, then
the secrets will have different values mu +mt and mu +m′

t. These values will not be equal,
and so in such cases the requestor will not require them to be equal.

12



We achieve that as follows. We require that an issuer only ever uses
a single TTP for issuance of all of its credentials, and we assume that
all participants know which issuers use which TTPs (in IRMA, this is
achieved using IRMA schemes). In addition, for ease of notation, if the
user uses no TTP for a credential, then we assume that it uses a fictional
TTP for that credential that uses mt = 0 and Wt = 1.

The challenge c must now be constructed as follows.

c = H(context, (6)
U1,W1, U2,W2, . . . ,

Ak,Wk, Ak,Wk+1, . . . ,

η),

where now for each of the Wi, one of the following must be the case:

1. If credential i uses this TTP, then in the challenge c as constructed
by the user and the TTP, the value Wi must be of the form Wi =
Wi,uWt as before;

2. If not, then the user has received a W ′
t from another TTP. It con-

structs Wi = Wi,uW
′
t and sends that to the current TTP, who uses

Wi as is (that is, without multiplying it with its own Wt) in the
computation of c.

As mentioned before, in order to keep the security proof working, by the
time C(i, hW ) is invoked the challenger must be able to construct the
challenge c that an honest user would use. Since for some i the TTP must
include in the commitments its contribution Wt during the computation
of the challenge c = H(·), while for others it must not, we now require that
the user indicates so for each credential in its computation of hW = H(·).
Since the challenger controls the hash function H, this provides it with
the require information. The value hW must therefore now be computed
as follows:

hW = H(b1, U1,W1,u, b2, U2,W2,u, . . .

bk, Ak,Wk,u, bk+1, Ak+1,Wk+1,u, . . . )
(7)

Here, bi is a bit indicating whether or not the TTP must include its
contribution Wt to the commitment Wi,u.

For notational ease we assume the simplest possible case, of two TTPs
are involved in one session; the generalization to more TTPs will be ob-
vious. When invoking C at each TTP, the user must send to them the
following values for hW :

H(1, U1,W1,u, 0, A2,W2,u),

H(0, U1,W1,u, 1, A2,W2,u).
(8)

Denote the commitments of the TTPs with which they respond with Wt

and W ′
t . Then if the protocol is to succeed, the user and both TTPs must

be able to construct the following challenge:

c = H(context, U1,W1,uWt, A2,W2,uW
′
t , η).

In the security proof we may assume that all participating TTPs are
controlled by the challenger. Therefore, by the time C(i, hW ) is invoked
the challenger knows both Wt and W ′

t , as well as all arguments passed
in the expressions 8. This indeed suffices to be able to compute this
challenge.

13



In implementations, the first TTP knows Wt and can compute W1,uWt

normally, thereby enforcing as it should that its contribution Wt to the
commitment is taken into account. However, as can be seen from the
expression for c above, it must also know W2,uW

′
t involving the W ′

t of the
second TTP. The user therefore has to send the product W2,uW

′
t to the

first TTP, and similarly W1,uWt to the second TTP, in the invocations
of R at each TTP, so that the TTPs can use those products as is in the
construction of the challenge c.

When interacting with a TTP, for each credential this construction
gives to the user the choice to include the TTP’s contributions to the
zero knowledge proof of the secret m, or not. However, the requestor
who finally verifies the proof knows the issuer of each involved credential,
so it also knows which TTP should be involved for those credentials. It
can therefore force the user to use the correct TTP for each credential, by
requiring a valid signature σ from the appropriate TTP for each credential.
Thus, for each credential the user is still required to use the appropriate
TTP.

Summarizing, this construction allows the user to use multiple TTPs
in a single session as follows.

1. First, it computes all commitments Wi,u as before.

2. Next, for each TTP it computes a value hW using Equation (7),
setting bi to 1 for the credentials for which it wants to use the TTP.

3. It invokes C(i, hW ) of each TTP using the values hW computed ear-
lier. From each TTP, it receives a value Wt in response.

4. For each credential i it computes Wi = Wi,uWt, where Wt is the
value it received from the TTP that it uses for credential i, and then
it computes the challenge c using Equation (6).

5. It invokes R for each TTP, sending to each TTP not only what it
normally does but also the product Wi = Wi,uWt for each proof
not involving that TTP. When computing the challenge c, the TTP
constructs Wi = Wi,uWt itself if the corresponding bit in hW was set
to 1 and otherwise uses the product Wi,uWt that it received from
the user. From each TTP the user receives a signature σ and a
response s such that σ signs (c, s). (The response s will be different
for each TTP, but there will be only a single challenge c.) It sends
all (σ, s) to the requestor, along with c, Ai, Uj , and the responses for
the proofs of knowledge over v and/or the hidden attributes.

6. The requestor, who knows which TTP is used for each credential
i, uses the appropriate response s out of all responses that it re-
ceives from the user when verifying the proofs of knowledge, and for
each response s involving a TTP it enforces the presence of a valid
signature σ from that TTP over (c, s).

Preliminaries
Lemma 1. Let X1 and X2 be two identically distributed, independent
discrete stochastic variables, taking values from a set of size N . Then
Pr(X1 = X2) ≥ 1

N
.

We prove the following equivalent lemma.

Lemma 2. Let f : Z≤N → [0, 1], with
N∑
i=1

f(i) = 1. Then
N∑
i=1

f(i)2 ≥ 1
N

.

14



Proof. We show this by induction. In the case that N = 1,
N∑
i=1

f(i) = 1

implies f(1) = 1, hence f(1)2 = 1.
Suppose the lemma holds for N −1. We consider two cases: if f(N) =

1, then the result is immediate. Otherwise let g : Z≤N−1 → [0, 1] be
defined through g(i) = f(i)

1−f(N)
. Calculating, we find:

N∑
i=1

f(i)2 = (1− f(N))2
N−1∑
i=1

g(i)2 + f(N)2

≥ (1− f(N))2
1

N − 1
+ f(N)2

Considering this last line as a function in the variable f(N), by the com-
bination of Fermat’s theorem on stationary points and the extreme value
theorem, it attains its minimum either at f(N) = 0, f(N) = 1, or when
−2(1 − f(N)) 1

N−1
+ 2f(N) = 0. The case f(N) = 1 we already dealt

with above. For f(N) = 0, the result is immediate. For the remaining
possibility, note that this implies f(N) = 1/N , which yields

N∑
i=1

f(i)2 ≥
(
N − 1

N

)2
1

N − 1
+

1

N2

=
1

N

(
N − 1

N
+

1

N

)
=

1

N
.

From this, Lemma 1 follows directly.

References
[22a] IRMA. https://irma.app. 2022.
[22b] IRMA technical documentation. https : / / irma . app /

docs. 2022.
[ASM06] M. H. Au, W. Susilo, and Y. Mu. “Constant-Size Dy-

namic k-TAA”. In: Security and Cryptography for Net-
works. Ed. by R. De Prisco and M. Yung. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2006, pp. 111–125.
isbn: 978-3-540-38081-8.

[CDL16] J. Camenisch, M. Drijvers, and A. Lehmann. “Anony-
mous Attestation Using the Strong Diffie Hellman As-
sumption Revisited”. In: Trust and Trustworthy Comput-
ing. Ed. by M. Franz and P. Papadimitratos. https://
eprint.iacr.org/2016/663. Cham: Springer Interna-
tional Publishing, 2016, pp. 1–20. isbn: 978-3-319-45572-
3.

[FS87] A. Fiat and A. Shamir. “How To Prove Yourself: Practical
Solutions to Identification and Signature Problems”. In:
Advances in Cryptology – CRYPTO’ 86. Ed. by A. M.
Odlyzko. Vol. 263. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1987, pp. 186–194. doi: 10.
1007/3-540-47721-7_12.

15

https://irma.app
https://irma.app/docs
https://irma.app/docs
https://eprint.iacr.org/2016/663
https://eprint.iacr.org/2016/663
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12


[IBM12] IBM Research Zürich Security Team. Specification of the
Identity Mixer Cryptographic Library, version 2.3.4. Tech.
rep. IBM Research, Zürich, Feb. 2012.

[Sch90] C. Schnorr. “Efficient Identification and Signatures for
Smart Cards”. In: Advances in Cryptology — EUROCRYPT
’89. Ed. by J.-J. Quisquater and J. Vandewalle. Vol. 434.
Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 1990, pp. 688–689. isbn: 978-3-540-53433-4. doi:
10.1007/3-540-46885-4_68.

16

https://doi.org/10.1007/3-540-46885-4_68

	Introduction
	The protocol
	Security games
	Security proof

	Implementation
	Issuance
	Disclosure
	Disclosure and/or issuance of multiple credentials
	Using another TTP or no TTP for some credentials


