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Abstract. Self-blindable credential schemes allow users to anonymously prove ownership
of credentials. This is achieved by randomizing the credential before each showing in such
a way that it still remains valid. As a result, each time a different version of the same
credential is presented. A number of such schemes have been proposed, but unfortunately
many of them are broken, in the sense that they are linkable (i.e., failing to protect the
privacy of the user), or malleable (i.e., they allow users to create new credentials using one
or more valid credentials given to them). In this paper we prove a general theorem that
relates linkability and malleability in self-blindable credential schemes, and that can test
whether a scheme is linkable or malleable. After that we apply the theorem to a number of
self-blindable credential schemes to show that they suffer from one or both of these issues.

1 Introduction

The indiscriminate collection and processing of personal data, and the consequences to the privacy
of citizens, has been getting more and more attention over the last few years. As a result, there
is an increasing demand for technologies that put privacy and control back in the hands of the
user. In the case of digital identity management, in particular, it is both highly desirable and
non-trivial to have privacy-friendly solutions.

Anonymous credentials are a promising technique for secure and privacy-friendly identity man-
agement. They are given by an issuer to the user, who can then prove possession of it to other
parties. This showing should be such that it is infeasible for the issuer, the verifier or any other
party to determine whether two transactions did or did not originate from the same user (this
property is called multi-show unlinkability, or just unlinkability for short). Additionally, creden-
tials have to be unforgeable, in the sense that the user cannot create his own credential, or modify
one or more existing ones in order to obtain a new credential (this kind of forgeability is called
malleability and plays and important role in this paper). A number of such systems already ex-
ist; we mention, for example, Idemix [4,10] and U-Prove [3,12]. Both of these are attribute based,
meaning that a credential may contain multiple attributes (which are pieces of information or
statements, generally about the owner of the credential). These systems tend to be complex,
however, which is why considerable effort has gone into simpler credential systems that have
no attributes (for example [9]; see also Example 3.1). Instead, such credentials are either valid
or invalid, resulting in simpler constructions that are easier to study and potentially more effi-
cient, allowing for practical implementations of such credentials on smart cards. Naturally, such
credential schemes still have to be unlinkable and unforgeable.

This article was presented at The 9th WISTP International Conference on Information Security The-
ory and Practice (WISTP’2015), and has been published in: Information Security Theory and Practice,
Ed. by R. Akram and S. Jajodia. Vol. 9311. Lecture Notes in Computer Science. Springer International
Publishing, 2015, pp. 203–218. The final publication is available at link.springer.com.
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A simple method to construct (not necessarily anonymous) credentials would be to sign the
user’s public key (for example in the form of an X.509 certificate). The signature, together with
the public key, then form the credential. To prevent replay attacks (e.g., a malicious verifier
reusing a user’s public key and signature to authenticate itself elsewhere), when showing the
credential the user proofs knowledge of the private key of his credential without disclosing the
private key to the verifier (using, for example, a zero-knowledge proof or a challenge-response).
A problem with this simple scheme, however, is that the user presents the same certificate on
each use, making all uses of the same credential linkable. One technique for preventing such
linkability is to modify the credential before each showing, in such a way that it remains valid.
This is called blinding, and credential schemes that use this technique are called self-blindable
credential schemes. The first example of such a scheme was given by Verheul in the same paper
that defines the notion of self-blindability [13]. The advantage of blinding credentials in such a
way is that it is easy for the user (blinding is usually cheap) and for the verifier (verifying a
blinded signature is generally not much different from verifying an ordinary signature).

In the past decade, a number of such self-blindable credential schemes have been proposed [4,7,9,11,13].
Unfortunately, many of them are broken, in the sense that transactions are linkable or the creden-
tials are malleable, or even both. In this paper we uncover a common theme in the cause of the
problem of each of these schemes: the dependence of the public key and signature on the private
key of the credential can often be exploited to achieve linkability or malleability. This suggests
there is a trade-off between the two. After having introduced and defined the relevant concepts in
Section 3, we show this by proving a general theorem in Section 4 that makes it easy to determine
whether a self-blindable credential scheme is linkable. The theorem exhibits an interesting and
strong relationship between linkability and malleability of the credential scheme. We then apply
this theorem in Section 5 to show that several proposed self-blindable schemes in the literature
are linkable, and present explicit counter-examples as well. The theorem also indicates in which
directions to look for self-blindable credential schemes that are both unlinkable and unmalleable.

2 Notations and conventions

In this paper we use the following notations and conventions. A bilinear group pair (G1, G2)
consists of two cyclic groups (that we will write additively), both of prime order p, such that
there exists a a bilinear map or pairing ; that is, a map e : G1×G2 → GT (with GT a multiplicative
group of order p) satisfying the following properties:

– Bilinearity : for all G,G′ ∈ G1 and H,H ′ ∈ G2 we have e(G+G′, H) = e(G,H)e(G′, H) and
e(G,H +H ′) = e(G,H)e(G,H ′).

– Non-degeneracy : Denoting the generators of G1 and G2 with P ∈ G1, Q ∈ G2 respectively,
the element e(P,Q) is a generator of GT (that is, it is unequal to 1 ∈ GT ).

– Computability : There exists an efficient algorithm for computing e(G,H) for any G ∈ G1,
H ∈ G2.

Such pairings exist for some special classes of elliptic curves. Usually, three distinct types of
bilinear group pairs are distinguished:

– Type 1: G1 = G2.
– Type 2: G1 6= G2, but there exists an efficiently computable group isomorphism φ : G2 → G1.
– Type 3: G1 6= G2, and there is no known efficiently computable group isomorphism φ : G2 →
G1.

For more information about bilinear group pairs and pairings we refer to [8]; see also, for example,
Chapters I and X from [1].
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We consider the coefficient k of a group element K = kP to be an element of Zp = Z/pZ.
Blinding factors will be denoted with Greek letters α, β, γ. We denote variables which have been
blinded with a bar on top of them, for example K.

3 Self-blindable credentials

A credential scheme is a set of protocols in which an issuer (or identity provider) can issue a
credential to a user, who can then show this credential to a verifier (or service provider), so that
the verifier becomes convinced that the user indeed has the credential, and that it was given to
him by the issuer. For the purposes of this paper we assume that there is a single issuer, and
that he creates all certificates using the same private key (our results easily extend to the general
case). Such credential schemes must provide at least the following two protocols:

Issue: This is an interactive protocol between a user and the issuer. The user provides the issuer
with the information it needs (if the issuer does not already know this information) in order
to create the credential C. The issuer checks whether the user is allowed to have the credential
C, and if so, creates it and sends it to the user.

ShowCredential: This is an interactive protocol between a user and a verifier, in which the user
convinces the verifier that he owns a credential C and that it is valid (i.e., that it was given
to him by the issuer, and if the credential scheme allows for revoking, that it has not been
revoked).3

A credential scheme may also allow for credentials to be revoked; in that case there is also a
Revoke protocol, which revokes (invalidates) a credential. Additionally, during the ShowCredential
protocol an algorithm RevocationCheck is executed, which checks if a credential has been revoked.

We expect any credential scheme, be it attribute-based, self-blindable or both, to satisfy the
following properties.

– Multi-show unlinkability : It should be impossible for any party to tell whether two executions
of the ShowCredential protocol involved the same credential or two different ones.4

– Issuer unlinkability : The issuer cannot decide if a run of the Issue and a run of the ShowCre-
dential protocol did or did not originate from the same credential.

– Unforgeability : Only the issuer can create valid credentials.
– Offline issuer : The issuer is not involved in the verification of credentials.
– Non-transferability : Users cannot transfer their credentials to other users.

3.1 Definitions

In all self-blindable credential schemes that we know of, a credential consists of a private key k,
a corresponding public key K, and a signature S over the public key that the issuer gives to the
3 Attribute-based credential schemes such as U-Prove and Idemix generally also allow selective disclo-
sures of attributes. Such disclosures, however, necessarily reduces the anonymity set of the credential
(and may even identify it uniquely).

4 In the case of attribute-based credential schemes, the unlinkability that the first and second properties
describe only need to hold within the set of credentials that have disclosed the same attributes. That
is, for example, given two executions of the ShowCredential protocol in which the same attributes with
the same values were disclosed, it should be impossible to tell whether one or two credentials were
involved. A similar adaptation holds for the second property.

In the remainder of this paper, we assume for simplicity that no attributes are disclosed in the
ShowCredential protocol.
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owner of the credential. That is, a credential C is of the form

C = (k,K, S) ∈ P ×K × S

where P, K and S are the sets of private keys, public keys and signatures, respectively. We shall
write C for the product C = P ×K×S. Let us say that an element (k,K, S) ∈ P ×K×S is valid
when k is the private key corresponding to K and S is a valid signature over K with respect to
the issuer’s signing key.
Self-blindable credentials, introduced by Verheul [13], are credentials that the user modifies

each time before he shows it to a verifier, in such a way that it remains valid, and such that
multiple transactions cannot be linked to each other. We define this notion as follows.5

Definition 3.1. A credential scheme is called self-blindable if

1. There exists a blinding-factor space B and an efficiently computable map

B : C × B → K × S,

such that if the credential C = (k,K, S) ∈ C is valid and B(C,α) = (K,S) for K ∈ K and
S ∈ S, then S is a valid signature over K for any α ∈ B;

2. In the ShowCredential protocol, the credential C is blinded to (K,S) = B(C,α) for a random
α ∈R B, after which K and S are used as the public key and signature respectively in the
remainder of the ShowCredential protocol.

Most self-blindable credential schemes that we know of have a ShowCredential protocol of the
following form:

1. The user blinds K and S using the blinding map B and sends the blinded values K, S to
the verifier, who then non-interactively checks that S is a valid signature over K.

2. Afterwards, the user and verifier engage in a (possibly zero-knowledge) proof in which the
user convinces the verifier that he knows the private key k and blinding factor α from which
he calculated K (i.e., the first element from the tuple (K,S) = B((k,K,C), α)).

We purposefully do not include the private key in the blinded credentials (that is, we do not
demand that B(C,α) = (k,K, S), where k is the private key corresponding to K), because if
such a map B were to exist then anyone can, given one credential, create arbitrary new ones.
That is, there would be no distinction between the creation of new credentials by the issuer and
blinding an existing credential. In terms of Definition 3.3, the system would then be 1-malleable.

Example 3.1. As a first example we consider the self-blindable credential by Hoepman et al. [9],
which is based on the original scheme by Verheul [13]. Here we use the Chaum–Pedersen [6]
signature scheme, as follows. Consider a Type 1 pairing e : G1 × G2 → GT , with all groups of
prime order p, and take generators P and Q for G1 and G2 respectively. Then the private signing
key of the issuer is a number a ∈ Zp, and the corresponding public key is A = aQ ∈ G2.

The space of private keys of credentials is P = Zp, and for a private key k ∈ Zp the corre-
sponding public key is K = kP ∈ G1. The signature on K is then a Chaum–Pedersen signature
S = aK, which can be verified by

e(K,A)
?
= e(S,Q).

5 In [13], Verheul puts four extra demands on the blinding map B besides item 1 in our definition, that
are meant to exclude edge cases that could never lead to desirable properties in a credential schemes.
Instead of including these four extra properties, we describe the role of the blinding map B more
directly in the second item in Definition 3.1.
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Thus, we have K = S = G1.
Blinding the public key is done by multiplying it by a random number α ∈ Zp, that is,

K = αkP , and similarly for the signature: S = αakP . The verification equation then becomes

e(K,A)
?
= e(S,Q).

If K and S are blinded by the same value α ∈ Zp, and if the unblinded signature is a valid
Chaum–Pedersen signature over the unblinded public key K, then this equation holds.

The problem of this system is not linkability, but malleability. Given a credential (k,K, S) on
its private key k the user can easily create a new credential (αk, αK,αS) on any other private
key αk. This means that a user that has access to the internals of his credential can create
a new credential over any private key k ∈ Zp, without involving the issuer. (Hoepman et al.
mitigate this attack by storing the private key on a smart card, so that the user cannot access it
directly. It is, however, still a problem, for example because revocation in such a system would
be impossible, because there is nothing that binds the private key to the user.)

We will examine this form of forgeability more closely in Definition 3.3 and Example 5.3. In
this case, it is a consequence of the linearity of the Chaum–Pedersen signature S in the private
key k. Later on, in Example 5.1, we will see how using a signature scheme that is nonlinear in k
results in linkability.

This paper is mostly concerned with how the blinded public key K and blinded signature S
depend on the private key k and blinding factor α. Taking the blinded public key K, we will
denote the dependency of K on k by writing

K = PubKey(k, α)

for a certain function PubKey : P × B → K. Similarly,

S = SigSK(k, α).

for a certain function SigSK : P×B → S. Here SK is the issuer’s private key. Using these functions
PubKey and SigSK , we can express the blinding map B as follows:

B((k,K, S), α) = (K,S) = (PubKey(k, α), SigSK(k, α)) .

We stress that these functions PubKey and SigSK need not correspond to any algorithm that
is run by one of the involved parties (typically, for example, the user will calculate the blinded
public key using the unblinded public key, not directly from the private key). The purpose of
these functions is purely to make the dependence on the private key and blinding factor explicit.

3.2 Security properties

Having defined the basic structures and the notion of self-blindability, we next turn to the security
properties that we expect credential schemes to satisfy.

Definition 3.2 (Unlinkability). A self-blindable credential scheme is unlinkable if no adver-
sary can win the following game with non-negligible advantage.

Setup The challenger sets up the system and creates n credentials with identifiers 1, . . . , n. It
sends the public parameters to the adversary.

Queries For any i ∈ {1, . . . , n} the adversary may issue the following queries:
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Verify(i) The adversary acts as the verifier in the ShowCredential protocol for the credential
i, with the challenger acting as the user. The adversary sees the same interaction as a
normal verifier would see.

Corrupt(i) The adversary requests the credential i to be corrupted. The challenger gives
him the internal state of credential i.

Challenge The adversary selects two uncorrupted credentials i0, i1 from the set {1, . . . , n} and
informs the challenger of his choice. The challenger then picks a bit b ∈R {0, 1} at random,
and runs ShowCredential on credential ib with the adversary playing the role of the user while
the adversary acts as the verifier. The adversary outputs a bit b′. He wins if b = b′.

This definition of linkability includes a stronger notion of linkability where the adversary only
gets to see two traces, and has to decide whether they belong to the same user. Given such
an adversary A′ we can then build an adversary A satisfying the definition above by having it
perform the following actions:

Setup A sets up the unlinkability game with his challenger.
Queries A chooses two credentials i0 and i1 at random from the list of credentials {1, . . . , n}

and queries his challenger on i0. He stores the trace of the protocol run.
Challenge A informs his challenger that he has chosen the credentials i0 and i1 from the

previous phase. He engages in the ShowCredential protocol on ib and stores the trace. Then,
he uses the algorithm A′ to compare the traces from i0 and ib. If A′ returns that i0 and ib
have the same public key then A outputs b′ = 0 as his guess; otherwise he outputs b′ = 1.

Then the algorithm A satisfies the definitions above.

Definition 3.3 (n-malleability). Let {(k1,K1, S1), . . . , (kn,Kn, Sn)} ∈ Cn be a tuple of n valid
credentials. If there exists an efficiently computable map F : Cn → C which outputs a valid cre-
dential on a new private key (that is, if

(k,K, S) = F
(
(k1,K1, S1), . . . , (kn,Kn, Sn)

)
then (k,K, S) is valid and k 6= ki for all i = 1, . . . , n) then we say that the credential scheme is
n-malleable.

Although malleability is nothing more than a particular kind of forgeability, it warrants a separate
definition because it occurs in a number of existing credential schemes, and because it plays an
important role in the theorem below. The problem that the definition above aims to capture is
that new credentials can be made without the involvement or knowledge of the issuer, if the user
has n credentials. We see that the credential scheme from Example 3.1 has 1-malleability: in that
scheme, given a credential (k,K, S) and any α ∈ Zp, the credential (αk, αK,αS) is a new valid
credential. This is a problem, because the blinded credential should still be bound to the original
private key k.

Note, however, that if the scheme is not attribute-based but credentials are either valid or
invalid, then malleability is not necessarily a problem. Modifying an existing credential into a
new one does not change any of its key properties: it was valid and it remains valid, so nothing
has really changed. On the other hand, we can think of the following cases in which it would be
a problem.

– The public key K may contain meaningful information such as attributes (as is the case in,
for example, U-Prove). In this case, the user should not be able to manipulate this meaningful
data, so it should be impossible by exploiting the malleability to obtain a new valid credential
whose public key contains different information. In particular, the user should not be able to
create a credential whose public key is K when given a credential with public key K.
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– In a self-blindable credential scheme that is not attribute-based (for example the one from
Example 3.1), issuers may issue multiple credentials (signed by different keys) instead of a
single credential with multiple attributes. For example, a public key signed with private key
a1 may mean that the user is over 18, while one signed with private key a2 could mean that he
is a German citizen. In such a setting it should be impossible to combine credentials issued to
different users. In this case, an underage German citizen should not be able to use his foreign
friend’s over 18 credential to prove that he is both over 18 and a German citizen. Normally,
such a proof would show that the signed public keys in both credentials are identical, thus
preventing credentials from being combined. However, malleability might make it possible
to change a credential over one public key (say the foreign friend’s) into another public key
(say of the underage German citizen). This would make credential pooling trivial.

– Similarly, the unchecked randomization of the signed public key can make revocation – an
essential feature of anonymous credential systems – all but impossible.

In the next section, we show that malleability has a strong link with linkability, and then examine
a number of credential schemes that suffer from these issues.

4 Relating malleability and linkability

In the credential schemes considered in this paper, the public key K ∈ K depends linearly on
the private key k ∈ P. Any signature over K obviously depends on K, and therefore also on k.
Thus, when considering suitable signature schemes, if the set of signatures is a group then we
may take one that is either linear or not linear in k. The theorem and its corollary below then
say the following: if the signature scheme is not linear in k, then there is linkability, while if it is
linear in k then the scheme may be malleable. Loosely speaking, this is because if the public key
and the signature do not depend on the user’s private key and the blinding factor in precisely
the same way, then this can be exploited. Let us now make this more precise.

We assume henceforth that P, K and S are all groups, that we will write additively. From the
corollary below and onwards it will moreover be the case that the latter two are vector spaces
over P, meaning that elements from K and S can be multiplied on the left by elements from P:
for example, kK ∈ K for k ∈ P and K ∈ K. We recall the following definition.

Definition 4.1. A map L : V → W , with V and W being vector spaces over P, is linear if
L(v + v′) = L(v) + L(v′) and L(kv) = kL(v) for all v, v′ ∈ V and k ∈ P.

We denote with VerifyPK : K×S → {true, false} the verification function of the signature scheme
under consideration, where PK is the public key of the issuer. That is, VerifyPK is such that

VerifyPK (PubKey(k, α),SigSK(k, α)) = true

for all k, α. On the other hand, whenever k 6= k′ or α 6= α′ (or both), we should have (with
overwhelming probability)

VerifyPK (PubKey(k, α),SigSK(k′, α′)) = false.

Theorem 4.1. Consider a self-blindable credential scheme. Suppose that for each k, k′ ∈ P and
α, α′ ∈ B there exist ` ∈ P and β ∈ B such that

PubKey(k, α) + PubKey(k′, α′) = PubKey(`, β). (1)
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If SigSK also has this property for the same `, β, that is,

SigSK(k, α) + SigSK(k′, α′) = SigSK(`, β) (2)

but only when k = k′, then there is linkability. On the other hand, if SigSK always has this
property, and

– the ShowCredential protocol allows the user to present (`, PubKey(`, β),
SigSK(`, β)) as a valid credential,

– the user can efficiently compute ` and β,

then there is 2-malleability.

Proof. Assume that SigSK has the stated property only when k = k′, and that equation (1)
always holds. Then if k = k′ we have SigSK(k, α) + SigSK(k′, α′) = SigSK(`, β) and similarly for
PubKey, so

VerifyPK (PubKey(k, α) + PubKey(k′, α′), SigSK(k, α) + SigSK(k′, α′))

= VerifyPK(PubKey(`, β), SigSK(`, β)) = true.

On the other hand, if k 6= k′, then SigSK(k, α) + SigSK(k′, α′) does not evaluate to SigSK(`, β).
Therefore

VerifyPK (PubKey(k, α) + PubKey(k′, α′), SigSK(k, α) + SigSK(k′, α′))

= false.

Thus, the function VerifyPK returns true when applied to the sum of the two credentials involved
if and only if k = k′, so that the scheme is linkable.

The second part of the statement is obvious: if the ShowProtocol protocol does not prevent
the user from using (`, PubKey(`, β),SigSK(`, β)) as a valid credential then he can present it to
verifiers, even though SigSK(`, β) was not given to him by the issuer.

Corollary 4.2. Suppose the function PubKey is linear in both arguments. If SigSK is linear in
the second but not the first argument, then there is linkability. If SigSK is linear in both arguments,
then there is 1-malleability.

Proof. Suppose SigSK is linear in the second but not the first argument, and that k = k′ ∈ P.
Then

PubKey(k, α) + PubKey(k′, α′)

= PubKey(k, α) + PubKey(k, α′)

= PubKey(k, α+ α′),

and since SigSK is also linear in the second argument, we will also have SigSK(k, α)+SigSK(k′, α′) =
SigSK(k, α+ α′). Thus SigSK(k, α+ α′) will be a valid signature over PubKey(k, α+ α′).

On the other hand, if k 6= k′ then

PubKey(k, α) + PubKey(k′, α′)

= kPubKey(1, α) + k′PubKey(1, α′)

= kαPubKey(1, 1) + k′α′PubKey(1, 1)

= (kα+ k′α′)PubKey(1, 1)

= PubKey(kα+ k′α′, 1),
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but now SigSK(k, α) + SigSK(k′, α′) 6= SigSK(kα + k′α′, 1), because SigSK is not linear in its
first argument. Hence the verification function VerifyPK over the sum of both credentials will
distinguish k = k′ and k 6= k′, so that the credential scheme is linkable.

Concerning the second statement of the corollary, if both PubKey and SigSK are linear in both
arguments, then

PubKey(k, α) = αPubKey(k, 1) = PubKey(αk, 1),

and similarly SigSK(k, α) = SigSK(αk, 1), so that (αk,PubKey(k, α),SigSK(k, α)) is a valid cre-
dential. Therefore, there is 1-malleability.

Essentially, the corollary implies that when the verification function is used directly in the
ShowCredential protocol, then it is very difficult to assure that it is neither linkable nor malleable.
Indeed, if the public key is linear in the private key while the signature is not, then there is likely
linkability through the verification equation of the signature scheme. On the other hand, if they
are both linear in the private key then it is likely that the system suffers from malleability.

In spite of this difficulty we do not believe that it is impossible to create a self-blindable
credential scheme that is neither malleable nor linkable; we will discuss this in more detail in
Section 6. In the next section, we discuss a number of self-blindable credential schemes, that all
suffer from one of these problems.

5 Broken self-blindable credential schemes

Example 5.1. For this example we reuse the PubKey function from Example 3.1, but this time we
use the (weak) Boneh–Boyen signature scheme [2] instead. In this scheme the public and private
keys of the issuer are a ∈ Zp and A = aQ ∈ G2 respectively, as before. A signature on k ∈ Zp

is S = 1
a+kP . Setting K = kQ ∈ G2 (note that now K ∈ G2, contrary to Example 3.1), the

signature S may be verified by checking that e(S,A+K)
?
= e(P,Q).

We still blind the public key and signature by multiplying it with a random number α, i.e.,

K = PubKey(k, α) = αkQ

and

S = Siga(k, α) =
α

a+ k
P.

In addition, the user will also have to send A = αA, P = αP and Q = αQ to the verifier. The
verification is done by checking

e(S,A+K)
?
= e(P ,Q).

The ShowCredential protocol of this scheme might look as follows.
In this case, if k = k′ then PubKey(k, α) + PubKey(k′, α′) = PubKey(k, α + α′), and similarly

Siga(k, α) + Siga(k
′, α′) = Siga(k, α+ α′), so that VerifyA will return true. On the other hand, if

k 6= k′, then

PubKey(k, α) + PubKey(k′, α′) = PubKey(αk + α′k′, 1)

while

Siga(k, α) + Siga(k
′, α′) 6= Siga(αk + α′k′, 1)

so VerifyA will return false. Thus, this system is linkable.
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User Verifier
choose blinding α ∈R Zp

send αK,αS, αA, αP , αQ −→ into K, S, A, P , Q
verify e(S,A+K)

?
= e(P ,Q)

PK{(κ) : K = κP} ←→

Fig. 1. Self-blindable credential scheme from Example 3.1 modified to use the Boneh–Boyen signature
scheme.

Example 5.2. Like the scheme from Example 3.1, the self-blindable credential scheme from Kiy-
omoto and Tanaka [11] uses Chaum-Pedersen signatures, but this time on a Type 1 curve (i.e.,
G1 = G2 = G and P = Q). The issuer’s public key is A = aP .

The private key here consists of two numbers (κ, κ′) ∈ Z2
p, where κ is random while κ′ = mκ is

a non-repudiation private key ; here m is a number encoding some valuable piece of information
related to the user. This would discourage users from sharing their credential, because if another
party learns κ and κ′ then it could recover m. Setting k := κ+ κ′, the corresponding public key
and signature are K = kP and S = aK = akP . The ShowCredential protocol of this scheme is
shown in Figure 2.

User Verifier
choose blinding α ∈R Zp

send αK,αS −→ into K, S
verify e(K,A) ?

= e(S, P )
choose nonce η ∈R Zp

into N ←− send ηP
send ακN , ακ′N −→ into M , M ′

verify e(M +M
′
, P )

?
= e(K, ηP )

run RevocationCheck(K,M)

Fig. 2. Self-blindable credential scheme by Kiyomoto et al. [11] (simplified).

This scheme suffers from a number of problems. First, the relation k = κ + mκ is nowhere
enforced by the ShowCredential protocol, in the sense that the user could use λ, k − λ for some
random λ ∈ Zp instead of κ, κ′. This means that users can easily share credentials after all,
without fear of disclosing the valuable information encoded by m.

Second, without going into the details of the revocation mechanism, we remark that it relies on
how k splits into k = κ+κ′, so that the problem above allows users to present revoked credentials
without problems. (In addition, the revocation mechanism introduces linkability.)

Third, since both the public key K and signature S are linear in both the blinding factor α
and private key k, by Corollary 4.2 the scheme is 1-malleable. For any α and valid credential
((κ, κ′),K, S) the user can present the credential ((λ, αk − λ), αK, αS). (Actually, because the
public key A = aP ∈ G lives in the same group as the signatures S = akP ∈ G, anyone can
easily create his own credential by setting K = (κ + κ′)P =: kP for some random κ, κ′ ∈ Zp,
and S = kA – that is, the system is actually 0-malleable.)

Example 5.3. Some of the problems of the credential scheme above were pointed out by Emura
et al. [7], who came up with an improved protocol that we will examine in this example. In
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this protocol the malleability is solved through the use of Boneh-Boyen signatures. Theorem 4.1
shows, however, that it is linkable. We explain the problem here.

User Verifier
choose nonce η ∈R Zp

into N ←− send ηQ
choose blinding α ∈R Zp

send αS, αkN,αA, αN,αP −→ into S,K,A,Q, P
verify e(P ,A) = e(P,A)

verify e(P , ηQ) = e(P,Q)

verify e(S, ηA+K) = e(P ,Q)

run RevocationCheck(A,K,Q)

Fig. 3. Self-blindable credential scheme by Emura et al. [7] (simplified).

The ShowCredential protocol is shown in Figure 3. As in Example 5.1, the Boneh-Boyen sig-
nature is of the form (

A,P,Q, S =
1

a+ k
P

)
;

we include the values A,P and Q explicitly in the signature because these are blinded as well in
the ShowCredential protocol. The blinding factor is (η, α), where η is chosen by the verifier and
α by the user. The blinded signature is then (αA,αP, αηQ, αS), while the blinded public key is
αηK.

Theorem 4.1 is directly applicable to this scheme; we now describe the resulting linkability
attack. Suppose the ShowCredential protocol is executed twice, and let (ηi, αi) be the blinding
factors used in two runs of the ShowCredential protocol, for i = 1, 2. Let Ai, P i, Qi, Si,Ki be the
values that the user sends to the issuer. We take the sum of two traces as follows:

A = η1A1 + η2A2 = (α1η1 + α2η2)A,

P = P 1 + P 2 = (α1 + α2)P,

Q = Q1 +Q2 = (α1η1 + α2η2)Q, (3)

S = S1 + S2 = α1S1 + α2S2,

K = K1 +K2 = α1η1K1 + α2K2.

Now we put these values in the third verification equation as follows:

e(S,A+K)
?
= e(P ,Q). (4)

If K1 = K2, then also S1 = S2 holds, and the lower two equations of (3) become S = (α1 +
α2)S, K = (α1η1 + α2η2)K. Then equation (4) will hold. On the other hand, if K1 6= K2 then
equation (4) will not hold. Thus, transactions are linkable by the third verification equation.6

6 Note, however, that only the verifier can calculate the element A = η1A1 + η2A2 (which is needed
in order to perform this linking attack), as it contains η1, η2 which are never sent to the user. This
differs from the linkability described in Example 5.1, in which anyone that can eavesdrop on the
communication between the user and verifier can execute the attack. On the other hand, transactions
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6 Can unmalleable, unlinkable self-blindable credential schemes
exist?

Let us briefly consider a number of ways in which the pitfall outlined by Theorem 4.1 might be
avoided. Suppose first that both the public key and the signature are linear in the private key,
and that the sum of a trace of the ShowCredential protocol again constitutes a valid public key
and signature. Then this can only be abused by a malicious user if he is able to calculate the
corresponding private key. Therefore, if this is not feasible (perhaps because the private key k
can only be calculated by the issuer, or because not all private keys are valid or allowable), then
the system would not be malleable in the sense of Definition 3.3.

As another approach, one might take a public key and signature scheme that are both nonlinear
in the private key k, or both nonlinear in the blinding factor α. In that case neither of the
statements of Theorem 4.1 would be applicable. Going further, the ShowCredential protocol may
be such that it is not necessary to send the public key to the verifier at all, so that it can play
no role in either linkability or malleability. (This approach is taken in Idemix; see Example 6.1
below. For this reason, as well as the fact that Idemix does not satisfy Definition 3.1, we do not
consider Idemix to be self-blindable.)

Example 6.1. The Idemix credential scheme [4,10] is an attribute-based credential scheme which
is neither linkable nor malleable, and indeed, Proposition 4.1 does not apply to Idemix. This is be-
cause the ShowCredential protocol is substantially different from the ones of the other schemes dis-
cussed so far. In short, it goes as follows: the user partially blinds the Camenisch–Lysyanskaya [5]
signature (A, e, v), resulting into (A, e, v), and sends A to the verifier. After that, they engage in
an interactive zero knowledge-proof in which the user shows that he knows e, v, and his private
key, without disclosing any of these. This has the following consequences:

– There is no clear separation between the sending and verification of the public key and
signature on the one hand, and a proof of knowledge of the secret key on the other hand.
Both of these happen in a single interactive algorithm.

– In fact, the user does not directly send the public key to the verifier at all, blinded or other-
wise. As a result, the map PubKey does not play any role in the ShowCredential algorithm.

– The map SigSK is not linear in the blinding factor.

Summarizing, we do not believe that it would be impossible to create self-blindable credential
schemes that are unlinkable and unmalleable, but since the margin for error seems to be small,
getting it right may be difficult. Such systems would certainly be useful and interesting, however,
so we would not discourage further research in this direction.

7 Conclusion

Creating a self-blindable credential scheme which is neither malleable nor linkable is hard, and
indeed all self-blindable credential schemes that we have studied are broken. There is a common
theme in their failures: the use of the verification equation of the signature scheme in the Show-
Credential protocol may cause linkability or malleability. We believe that this observation in the

can also be linked by checking the following equation:

e(α1P, α2S2) = e(P 1, S2)
?
= e(P 2, S1) = e(α2P, α1S1)

which will hold if and only if S1 = S2; that is, when the signatures are the same. This attack can be
done by any eavesdropper.
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form of Theorem 4.1 and Corollary 4.2, together with the examples showing the consequences
of this observation, will be of help in the creation of new, secure and anonymous self-blindable
credential schemes.
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